skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Ching-Tarng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We report the direct observation of intervalley exciton between the Q conduction valley and Γ valence valley in bilayer WSe2 by photoluminescence. The QΓ exciton lies at ~18 meV below the QK exciton and dominates the luminescence of bilayer WSe2. By measuring the exciton spectra at gate-tunable electric field, we reveal different interlayer electric dipole moments and Stark shifts between QΓ and QK excitons. Notably, we can use the electric field to switch the energy order and dominant luminescence between QΓ and QK excitons. Both QΓ and QK excitons exhibit pronounced phonon replicas, in which two-phonon replicas outshine the one-phonon replicas due to the existence of (nearly) resonant exciton-phonon scatterings and numerous two-phonon scattering paths. We can simulate the replica spectra by comprehensive theoretical modeling and calculations. The good agreement between theory and experiment for the Stark shifts and phonon replicas strongly supports our assignment of QΓ and QK excitons. 
    more » « less